Skip to content
Projects
Groups
Snippets
Help
This project
Loading...
Sign in / Register
Toggle navigation
C
Code_Sidang_Ulang
Project
Overview
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Ari Whuandaniel Manurung
Code_Sidang_Ulang
Commits
5c56bae1
Commit
5c56bae1
authored
Jul 24, 2020
by
ratna kasmala
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
b67e6851
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
958 additions
and
0 deletions
+958
-0
Try_ABC.ipynb
Try_ABC.ipynb
+958
-0
No files found.
Try_ABC.ipynb
0 → 100644
View file @
5c56bae1
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Using TensorFlow backend.\n"
]
}
],
"source": [
"import csv\n",
"import math\n",
"import random\n",
"import sys\n",
"from scipy.spatial import distance\n",
"import pandas as pd\n",
"from numpy import * \n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import math\n",
"import csv\n",
"import random\n",
"import time\n",
"import sys\n",
"import datetime\n",
"import timeit\n",
"from sklearn.neighbors import DistanceMetric\n",
"from math import radians,cos,sin\n",
"from haversine import haversine, Unit\n",
"from scipy.spatial import distance\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"from keras.models import Sequential\n",
"from keras.layers import Bidirectional, GlobalMaxPool1D\n",
"from keras.layers import LSTM\n",
"from keras.layers import Dropout, Dense\n",
"from math import sqrt\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"#Load dataset sebelum integrasi\n",
"Data1 = pd.read_csv('./tri/Data Toba Samosir - Sheet3.csv')\n",
"Data1.drop(Data1.filter(regex=\"Unname\"),axis=1, inplace=True)\n",
"Data2 = pd.read_csv('./tri/Data Toba Samosir - Sheet1.csv')\n",
"Data2.drop(Data2.filter(regex=\"Unname\"),axis=1, inplace=True)\n",
"Data3 = pd.read_csv('./tri/List_city.csv')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>ID_City</th>\n",
" <th>City</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>Pantai BUL BUL</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>BUKIT travel Gibeon</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>Pakkodian</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>Taman Eden 100 Tobasa</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>Water Park Tambunan</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" ID_City City\n",
"0 0 Pantai BUL BUL\n",
"1 1 BUKIT travel Gibeon\n",
"2 2 Pakkodian\n",
"3 3 Taman Eden 100 Tobasa\n",
"4 4 Water Park Tambunan"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data3.head()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"start = datetime.datetime.strptime(\"21-07-2020\", \"%d-%m-%Y\")\n",
"end = datetime.datetime.strptime(\"22-07-2020\", \"%d-%m-%Y\")\n",
"date_generated = [start + datetime.timedelta(days=x) for x in range(0, (end-start).days)]\n",
"#print(len(date_generated))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"#cost = input()\n",
"cost = 400000\n",
"Cost = int(cost)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Random Data"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"209.0"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def getting_distance(Data):\n",
" distance_route = []\n",
" last_distance = 0\n",
" distance = 0\n",
" for i in range(0,len(Data)-1):\n",
" source = Data[i]\n",
" target = Data[i+1]\n",
" distance_route.append(Data2.iloc[source][target])\n",
" for i in range(0,len(Data)-1):\n",
" source = Data[len(Data)-1]\n",
" target = Data[len(Data)-len(Data)]\n",
" last_distance = Data2.iloc[source][target] \n",
" distance = sum(distance_route)+last_distance\n",
" return distance\n",
"\n",
"\n",
"id_city = list(Data3['ID_City'])\n",
"Data4 = random.sample(range(len(id_city)), 7)\n",
"getting_distance(Data4)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[30, 0, 16, 32, 20, 29, 1]"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Data4"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"class Fitness_value:\n",
" def getting_max_distance():\n",
" max_distance = 0 \n",
" max_distance += len(date_generated) * 720\n",
" return max_distance\n",
" def getting_max_cost():\n",
" max_cost = 0\n",
" max_cost +=Cost\n",
" return max_cost"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"720"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Fitness_value.getting_max_distance()"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"class Bee:\n",
" def __init__(self, node_set):\n",
" self.role = ''\n",
" self.path = list(node_set) # stores all nodes in each bee, will randomize foragers\n",
" self.distance = 0\n",
" self.temperature = 0\n",
" self.cycle = 0 \n",
" self.cost = 0"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"def initialize_hive(population, data):\n",
" path = Data4\n",
" hive = [Bee(path) for i in range (0, population)]\n",
" return hive"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"def assign_roles(hive, role_percentiles):\n",
" forager_percent = 0.5\n",
" onlooker_percent = 0.5\n",
" role_percent = [onlooker_percent, forager_percent]\n",
" scout_percent = 0.2\n",
" population = len(hive)\n",
" onlooker_count = math.floor(population * role_percentiles[0])\n",
" forager_count = math.floor(population * role_percentiles[1])\n",
" for i in range(0, onlooker_count):\n",
" hive[i].role = 'O'\n",
" for i in range(onlooker_count, (onlooker_count + forager_count)):\n",
" hive[i].role = 'F'\n",
" random.shuffle(hive[i].path)\n",
" hive[i].distance = getting_distance(hive[i].path)\n",
" return hive"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"def mutate_path(path):\n",
" # - will go out of range if last element is chosen.\n",
" path = Data4\n",
" new_path = random.sample(path,len(path))\n",
" return new_path"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [],
"source": [
"def forage(bee,limit):\n",
" new_path = mutate_path(bee.path)\n",
" new_distance = getting_distance(new_path)\n",
" if new_distance < bee.distance:\n",
" bee.path = new_path\n",
" bee.distance = new_distance\n",
" bee.cycle = 0 # reset cycle so bee can continue to make progress\n",
" else:\n",
" bee.cycle += 1\n",
" if bee.cycle >= limit: # if bee is not making progress\n",
" bee.role = 'S'\n",
" return bee.distance, list(bee.path)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"def scout(bee):\n",
" new_path = list(bee.path)\n",
" random.shuffle(new_path)\n",
" bee.path = new_path\n",
" bee.distance = getting_distance(bee.path)\n",
" # bee.temperature = Weather\n",
" bee.role = 'F'\n",
" bee.cycle = 0"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"def waggle(hive, best_distance,forager_limit, scout_count):\n",
" best_path = []\n",
" results = []\n",
" for i in range(0, len(hive)):\n",
" if hive[i].role == 'F':\n",
" distance, path = forage(hive[i], forager_limit)\n",
" if distance < best_distance:\n",
" best_distance = distance\n",
" best_path = list(hive[i].path)\n",
" results.append((i, distance))\n",
"\n",
" elif hive[i].role == 'S':\n",
" scout(hive[i])\n",
" # after processing all bees, set worst performers to scout\n",
" results.sort(reverse = True, key=lambda tup: tup[1])\n",
" scouts = [ tup[0] for tup in results[0:int(scout_count)] ]\n",
" for new_scout in scouts:\n",
" hive[new_scout].role = 'S'\n",
" return best_distance, best_path"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [],
"source": [
"def recruit(hive, best_distance, best_path):\n",
" for i in range(0, len(hive)):\n",
" if hive[i].role == 'O':\n",
" new_path = mutate_path(best_path)\n",
" new_distance = getting_distance(new_path)\n",
" if new_distance < best_distance:\n",
" best_distance = new_distance\n",
" best_path = new_path\n",
" return best_distance, best_path"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"def print_details(cycle, path, distance,bee):\n",
" \"\"\"\n",
" Prints cycle details to console.\n",
" \"\"\"\n",
" print(\"CYCLE: {}\".format(cycle))\n",
" print(\"PATH: {}\".format(path))\n",
" print(\"DISTANCE: {}\".format(distance))\n",
" # print(\"COST: {}\".format(cost))\n",
" # print(\"TEMPERATURE: {}\".format(temperature))\n",
" print(\"BEE: {}\".format(bee))\n",
" print(\"\\n\")"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"Maximum_distance = Fitness_value.getting_max_distance()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"def main():\n",
" # Control parameters\n",
" population = 40\n",
" forager_percent = 0.5\n",
" onlooker_percent = 0.4\n",
" role_percent = [onlooker_percent, forager_percent]\n",
" scout_percent = 0.01\n",
" scout_count = math.ceil(population * scout_percent)\n",
" forager_limit = 500\n",
" cycle_limit = 100\n",
" cycle = 1\n",
" # temperature = Weather\n",
" # Data source\n",
" # data = read_data_from_csv(\"data/data_10.csv\")\n",
" # data = read_data_from_csv(\"data/data_11.csv\")\n",
" data = Data4\n",
" # Global vars\n",
" best_distance = sys.maxsize\n",
" best_path = []\n",
" result = ()\n",
" # Initialization\n",
" hive = initialize_hive(population, data)\n",
" assign_roles(hive, role_percent)\n",
"# cost = get_total_cost(path)\n",
" while cycle < cycle_limit:\n",
" waggle_distance,waggle_path = waggle(hive, best_distance,forager_limit,scout_count)\n",
" if (waggle_distance < best_distance) and (waggle_distance <= Maximum_distance):\n",
" best_distance = waggle_distance\n",
" best_path = list(waggle_path)\n",
" # cost = get_total_cost(path)\n",
" # temperature = Weather\n",
" print_details(cycle, best_path, best_distance,'F')\n",
" result = (cycle, best_path, best_distance,'F')\n",
" recruit_distance,recruit_path = recruit(hive, best_distance,best_path)\n",
" if (recruit_distance < best_distance) and (recruit_distance <= Maximum_distance):\n",
" best_path = list(recruit_path)\n",
" best_distance = recruit_distance \n",
"# cost = get_total_cost(path)\n",
" print_details(cycle, best_path, best_distance,'R')\n",
" result = (cycle, best_path, best_distance,'R')\n",
" if cycle % 100 == 0:\n",
" print(\"CYCLE #: {}\\n\".format(cycle))\n",
" cycle += 1"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CYCLE: 1\n",
"PATH: [20, 1, 32, 30, 29, 0, 16]\n",
"DISTANCE: 191.70000000000002\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [30, 16, 20, 0, 29, 1, 32]\n",
"DISTANCE: 185.30000000000004\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 2\n",
"PATH: [16, 20, 0, 1, 29, 32, 30]\n",
"DISTANCE: 185.20000000000002\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 2\n",
"PATH: [30, 1, 29, 0, 20, 16, 32]\n",
"DISTANCE: 185.10000000000002\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 3\n",
"PATH: [30, 32, 1, 29, 20, 16, 0]\n",
"DISTANCE: 185.0\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 15\n",
"PATH: [32, 30, 29, 1, 16, 20, 0]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [29, 20, 16, 0, 30, 32, 1]\n",
"DISTANCE: 185.0\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 3\n",
"PATH: [30, 1, 29, 16, 20, 0, 32]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [1, 29, 20, 16, 0, 32, 30]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [32, 30, 0, 20, 16, 1, 29]\n",
"DISTANCE: 185.3\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [20, 0, 32, 30, 29, 1, 16]\n",
"DISTANCE: 185.0\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 4\n",
"PATH: [30, 29, 1, 16, 20, 0, 32]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [20, 16, 0, 1, 29, 30, 32]\n",
"DISTANCE: 185.4\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [0, 20, 16, 32, 30, 1, 29]\n",
"DISTANCE: 185.1\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 5\n",
"PATH: [20, 0, 32, 30, 29, 1, 16]\n",
"DISTANCE: 185.0\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 6\n",
"PATH: [0, 30, 32, 1, 29, 20, 16]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [1, 0, 20, 16, 30, 32, 29]\n",
"DISTANCE: 185.2\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 2\n",
"PATH: [30, 32, 1, 29, 0, 20, 16]\n",
"DISTANCE: 185.1\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 3\n",
"PATH: [29, 1, 16, 20, 0, 32, 30]\n",
"DISTANCE: 185.0\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 12\n",
"PATH: [32, 30, 29, 1, 16, 20, 0]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [29, 1, 16, 20, 0, 32, 30]\n",
"DISTANCE: 185.0\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 4\n",
"PATH: [0, 30, 32, 1, 29, 20, 16]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [1, 16, 20, 0, 32, 30, 29]\n",
"DISTANCE: 185.0\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 2\n",
"PATH: [0, 30, 32, 1, 29, 20, 16]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [20, 0, 1, 29, 30, 32, 16]\n",
"DISTANCE: 185.4\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 2\n",
"PATH: [32, 30, 1, 29, 0, 20, 16]\n",
"DISTANCE: 185.10000000000002\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 2\n",
"PATH: [29, 1, 0, 16, 20, 32, 30]\n",
"DISTANCE: 185.00000000000003\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 5\n",
"PATH: [0, 32, 30, 29, 1, 16, 20]\n",
"DISTANCE: 185.0\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 21\n",
"PATH: [1, 29, 20, 16, 0, 32, 30]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [20, 16, 0, 32, 30, 29, 1]\n",
"DISTANCE: 185.10000000000002\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 4\n",
"PATH: [1, 29, 0, 16, 20, 30, 32]\n",
"DISTANCE: 185.0\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 21\n",
"PATH: [0, 32, 30, 1, 29, 20, 16]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [0, 30, 32, 1, 29, 20, 16]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [16, 0, 1, 29, 30, 32, 20]\n",
"DISTANCE: 185.4\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 2\n",
"PATH: [32, 1, 29, 0, 20, 16, 30]\n",
"DISTANCE: 185.1\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 3\n",
"PATH: [32, 1, 29, 20, 16, 0, 30]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [30, 32, 1, 29, 20, 16, 0]\n",
"DISTANCE: 185.0\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 6\n",
"PATH: [30, 32, 1, 29, 16, 20, 0]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [32, 1, 29, 0, 20, 16, 30]\n",
"DISTANCE: 185.1\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 4\n",
"PATH: [16, 20, 32, 30, 29, 1, 0]\n",
"DISTANCE: 185.0\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 34\n",
"PATH: [32, 30, 1, 29, 20, 16, 0]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [32, 30, 20, 16, 0, 1, 29]\n",
"DISTANCE: 185.3\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [30, 32, 1, 29, 0, 20, 16]\n",
"DISTANCE: 185.1\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 4\n",
"PATH: [29, 20, 16, 0, 30, 32, 1]\n",
"DISTANCE: 185.0\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 61\n",
"PATH: [30, 29, 1, 16, 20, 0, 32]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [0, 30, 1, 29, 32, 16, 20]\n",
"DISTANCE: 190.4\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 4\n",
"PATH: [32, 29, 1, 0, 16, 20, 30]\n",
"DISTANCE: 185.10000000000002\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 4\n",
"PATH: [30, 32, 1, 29, 20, 16, 0]\n",
"DISTANCE: 185.0\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 72\n",
"PATH: [30, 32, 1, 29, 16, 20, 0]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [20, 30, 32, 1, 29, 0, 16]\n",
"DISTANCE: 185.0\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 11\n",
"PATH: [30, 32, 1, 29, 16, 20, 0]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [1, 29, 0, 20, 16, 32, 30]\n",
"DISTANCE: 185.1\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 3\n",
"PATH: [20, 32, 30, 29, 1, 0, 16]\n",
"DISTANCE: 185.0\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 7\n",
"PATH: [32, 30, 29, 1, 16, 20, 0]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [29, 32, 30, 16, 20, 0, 1]\n",
"DISTANCE: 185.20000000000002\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 2\n",
"PATH: [16, 20, 30, 32, 29, 1, 0]\n",
"DISTANCE: 185.1\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 4\n",
"PATH: [0, 16, 20, 30, 32, 1, 29]\n",
"DISTANCE: 185.0\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 19\n",
"PATH: [1, 29, 20, 16, 0, 32, 30]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [16, 32, 29, 1, 30, 0, 20]\n",
"DISTANCE: 190.5\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 1\n",
"PATH: [29, 1, 30, 32, 0, 20, 16]\n",
"DISTANCE: 185.60000000000002\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 2\n",
"PATH: [30, 0, 16, 20, 1, 29, 32]\n",
"DISTANCE: 185.20000000000002\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 2\n",
"PATH: [32, 30, 29, 1, 20, 16, 0]\n",
"DISTANCE: 185.1\n",
"BEE: R\n",
"\n",
"\n",
"CYCLE: 4\n",
"PATH: [20, 0, 32, 30, 29, 1, 16]\n",
"DISTANCE: 185.0\n",
"BEE: F\n",
"\n",
"\n",
"CYCLE: 6\n",
"PATH: [0, 32, 30, 1, 29, 20, 16]\n",
"DISTANCE: 184.99999999999997\n",
"BEE: F\n",
"\n",
"\n"
]
}
],
"source": [
"if __name__ == '__main__':\n",
" for i in range (0, 20):\n",
" \n",
" main()\n",
"\n",
" # main()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def getting_best_path():\n",
" # Control parameters\n",
" population = 40\n",
" forager_percent = 0.5\n",
" onlooker_percent = 0.4\n",
" role_percent = [onlooker_percent, forager_percent]\n",
" scout_percent = 0.01\n",
" scout_count = math.ceil(population * scout_percent)\n",
" forager_limit = 500\n",
" cycle_limit = 100\n",
" cycle = 1\n",
" best_distance = sys.maxsize\n",
" best_path = []\n",
" result = ()\n",
" data = Data4\n",
" # Initialization\n",
" hive = initialize_hive(population, data)\n",
" assign_roles(hive, role_percent)\n",
" #cost = get_total_cost(path)\n",
" waggle_distance,waggle_path = waggle(hive, best_distance,forager_limit,scout_count)\n",
" if (waggle_distance < best_distance) and (waggle_distance <= Maximum_distance):\n",
" best_distance = waggle_distance\n",
" best_path = list(waggle_path)\n",
" recruit_distance,recruit_path = recruit(hive, best_distance,best_path)\n",
" if (recruit_distance < best_distance) and (recruit_distance <= Maximum_distance):\n",
" best_path = list(recruit_path)\n",
" best_distance = recruit_distance \n",
" return best_path"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"best_path = getting_best_path()\n",
"best_path"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment