Replace Word-Node2vec TA12.ipynb

parent caea67cf
......@@ -9,440 +9,7 @@
"import pandas as pd\n",
"import numpy as np\n",
"\n",
"data = pd.read_csv(\"men-products.csv\", delimiter=',', index_col=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ignore the tuple"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>total_missing</th>\n",
" <th>percent_missing</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>NAME</th>\n",
" <td>1</td>\n",
" <td>0.005</td>\n",
" </tr>\n",
" <tr>\n",
" <th>CATEGORY</th>\n",
" <td>0</td>\n",
" <td>0.000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>DESCRIPTION &amp; COLOR</th>\n",
" <td>0</td>\n",
" <td>0.000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>FABRIC</th>\n",
" <td>4833</td>\n",
" <td>24.165</td>\n",
" </tr>\n",
" <tr>\n",
" <th>IMAGE</th>\n",
" <td>0</td>\n",
" <td>0.000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>SIZE</th>\n",
" <td>3838</td>\n",
" <td>19.190</td>\n",
" </tr>\n",
" <tr>\n",
" <th>PRICE</th>\n",
" <td>0</td>\n",
" <td>0.000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>PRODUCT ID</th>\n",
" <td>0</td>\n",
" <td>0.000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>WEBSITE</th>\n",
" <td>0</td>\n",
" <td>0.000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>PRODUCT URL</th>\n",
" <td>0</td>\n",
" <td>0.000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" total_missing percent_missing\n",
"NAME 1 0.005\n",
"CATEGORY 0 0.000\n",
"DESCRIPTION & COLOR 0 0.000\n",
"FABRIC 4833 24.165\n",
"IMAGE 0 0.000\n",
"SIZE 3838 19.190\n",
"PRICE 0 0.000\n",
"PRODUCT ID 0 0.000\n",
"WEBSITE 0 0.000\n",
"PRODUCT URL 0 0.000"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"missing_data = pd.DataFrame({'total_missing': data.isnull().sum(), 'percent_missing': (data.isnull().sum()/20000)*100})\n",
"missing_data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>NAME</th>\n",
" <th>CATEGORY</th>\n",
" <th>DESCRIPTION &amp; COLOR</th>\n",
" <th>FABRIC</th>\n",
" <th>IMAGE</th>\n",
" <th>SIZE</th>\n",
" <th>PRICE</th>\n",
" <th>PRODUCT ID</th>\n",
" <th>WEBSITE</th>\n",
" <th>PRODUCT URL</th>\n",
" </tr>\n",
" <tr>\n",
" <th>SERIAL NO</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>U.S. Polo Assn. Men Brown Genuine Leather Two ...</td>\n",
" <td>accessories</td>\n",
" <td>U.S. Polo Assn. Men Brown Genuine Leather Two ...</td>\n",
" <td>Genuine leather</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>Height: 11.5 cm</td>\n",
" <td>809</td>\n",
" <td>1943420</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/wallets/us-polo-assn/us...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Baggit Men Black Solid Two Fold Wallet</td>\n",
" <td>accessories</td>\n",
" <td>Baggit Men Black Solid Two Fold Wallet, Baggi...</td>\n",
" <td>PU</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>Height:</td>\n",
" <td>720</td>\n",
" <td>4608404</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/wallets/baggit/baggit-m...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>HRX by Hrithik Roshan Men Grey Solid Baseball Cap</td>\n",
" <td>accessories</td>\n",
" <td>HRX By Hrithik Roshan Men Grey Solid Baseball ...</td>\n",
" <td>NaN</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>NaN</td>\n",
" <td>279</td>\n",
" <td>2178513</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/caps/hrx-by-hrithik-ros...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Puma Unisex Grey Style Military Solid Baseball...</td>\n",
" <td>accessories</td>\n",
" <td>Puma Unisex Grey Style Military Solid Baseball...</td>\n",
" <td>NaN</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>NaN</td>\n",
" <td>499</td>\n",
" <td>6699035</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/caps/puma/puma-unisex-g...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>FabSeasons Beige Solid Scarf</td>\n",
" <td>accessories</td>\n",
" <td>FabSeasons Beige Solid Scarf, FabSeasons, Scar...</td>\n",
" <td>Acrylic</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>Length:0.9 m</td>\n",
" <td>449</td>\n",
" <td>2439658</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/scarves/fabseasons/fabs...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>Ed Hardy Men Black Embellished Belt</td>\n",
" <td>accessories</td>\n",
" <td>Ed Hardy Men Black Embellished Belt, Ed Hardy...</td>\n",
" <td>Leather</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>Width: 3.7 cm</td>\n",
" <td>1199</td>\n",
" <td>2238752</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/belts/ed-hardy/ed-hardy...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>Roadster Men Tan Brown Leather Belt</td>\n",
" <td>accessories</td>\n",
" <td>Roadster Men Tan Brown Leather Belt, Roadster,...</td>\n",
" <td>Leather</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>Width: 4 cm</td>\n",
" <td>419</td>\n",
" <td>2975974</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/belts/roadster/roadster...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>Peora Silver-Toned Rhodium-Plated Stone-Studde...</td>\n",
" <td>accessories</td>\n",
" <td>Peora Silver Toned Rhodium Plated Stone Studde...</td>\n",
" <td>NaN</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>NaN</td>\n",
" <td>551</td>\n",
" <td>3006095</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/ring/peora/peora-silver...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>Royal Enfield Unisex White Urban Trooper Helme...</td>\n",
" <td>accessories</td>\n",
" <td>Royal Enfield Unisex White Urban Trooper Helme...</td>\n",
" <td>NaN</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>NaN</td>\n",
" <td>3500</td>\n",
" <td>2242802</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/helmets/royal-enfield/r...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>BuckleUp Men Black Leather Belt</td>\n",
" <td>accessories</td>\n",
" <td>BuckleUp Men Black Leather Belt, BuckleUp, Bel...</td>\n",
" <td>Leather</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>Width: 3.5 cm</td>\n",
" <td>517</td>\n",
" <td>1734718</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/belts/buckleup/buckleup...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" NAME CATEGORY \\\n",
"SERIAL NO \n",
"1 U.S. Polo Assn. Men Brown Genuine Leather Two ... accessories \n",
"2 Baggit Men Black Solid Two Fold Wallet accessories \n",
"3 HRX by Hrithik Roshan Men Grey Solid Baseball Cap accessories \n",
"4 Puma Unisex Grey Style Military Solid Baseball... accessories \n",
"5 FabSeasons Beige Solid Scarf accessories \n",
"6 Ed Hardy Men Black Embellished Belt accessories \n",
"7 Roadster Men Tan Brown Leather Belt accessories \n",
"8 Peora Silver-Toned Rhodium-Plated Stone-Studde... accessories \n",
"9 Royal Enfield Unisex White Urban Trooper Helme... accessories \n",
"10 BuckleUp Men Black Leather Belt accessories \n",
"\n",
" DESCRIPTION & COLOR \\\n",
"SERIAL NO \n",
"1 U.S. Polo Assn. Men Brown Genuine Leather Two ... \n",
"2 Baggit Men Black Solid Two Fold Wallet, Baggi... \n",
"3 HRX By Hrithik Roshan Men Grey Solid Baseball ... \n",
"4 Puma Unisex Grey Style Military Solid Baseball... \n",
"5 FabSeasons Beige Solid Scarf, FabSeasons, Scar... \n",
"6 Ed Hardy Men Black Embellished Belt, Ed Hardy... \n",
"7 Roadster Men Tan Brown Leather Belt, Roadster,... \n",
"8 Peora Silver Toned Rhodium Plated Stone Studde... \n",
"9 Royal Enfield Unisex White Urban Trooper Helme... \n",
"10 BuckleUp Men Black Leather Belt, BuckleUp, Bel... \n",
"\n",
" FABRIC \\\n",
"SERIAL NO \n",
"1 Genuine leather \n",
"2 PU \n",
"3 NaN \n",
"4 NaN \n",
"5 Acrylic \n",
"6 Leather \n",
"7 Leather \n",
"8 NaN \n",
"9 NaN \n",
"10 Leather \n",
"\n",
" IMAGE SIZE \\\n",
"SERIAL NO \n",
"1 https://assets.myntassets.com/h_1440,q_100,w_1... Height: 11.5 cm \n",
"2 https://assets.myntassets.com/h_1440,q_100,w_1... Height: \n",
"3 https://assets.myntassets.com/h_1440,q_100,w_1... NaN \n",
"4 https://assets.myntassets.com/h_1440,q_100,w_1... NaN \n",
"5 https://assets.myntassets.com/h_1440,q_100,w_1... Length:0.9 m \n",
"6 https://assets.myntassets.com/h_1440,q_100,w_1... Width: 3.7 cm \n",
"7 https://assets.myntassets.com/h_1440,q_100,w_1... Width: 4 cm \n",
"8 https://assets.myntassets.com/h_1440,q_100,w_1... NaN \n",
"9 https://assets.myntassets.com/h_1440,q_100,w_1... NaN \n",
"10 https://assets.myntassets.com/h_1440,q_100,w_1... Width: 3.5 cm \n",
"\n",
" PRICE PRODUCT ID WEBSITE \\\n",
"SERIAL NO \n",
"1 809 1943420 Myntra \n",
"2 720 4608404 Myntra \n",
"3 279 2178513 Myntra \n",
"4 499 6699035 Myntra \n",
"5 449 2439658 Myntra \n",
"6 1199 2238752 Myntra \n",
"7 419 2975974 Myntra \n",
"8 551 3006095 Myntra \n",
"9 3500 2242802 Myntra \n",
"10 517 1734718 Myntra \n",
"\n",
" PRODUCT URL \n",
"SERIAL NO \n",
"1 https://www.myntra.com/wallets/us-polo-assn/us... \n",
"2 https://www.myntra.com/wallets/baggit/baggit-m... \n",
"3 https://www.myntra.com/caps/hrx-by-hrithik-ros... \n",
"4 https://www.myntra.com/caps/puma/puma-unisex-g... \n",
"5 https://www.myntra.com/scarves/fabseasons/fabs... \n",
"6 https://www.myntra.com/belts/ed-hardy/ed-hardy... \n",
"7 https://www.myntra.com/belts/roadster/roadster... \n",
"8 https://www.myntra.com/ring/peora/peora-silver... \n",
"9 https://www.myntra.com/helmets/royal-enfield/r... \n",
"10 https://www.myntra.com/belts/buckleup/buckleup... "
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data.duplicated().sum()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Delete Columns "
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"del data['FABRIC']\n",
"del data['IMAGE']\n",
"del data['SIZE']\n",
"del data['WEBSITE']\n",
"del data['PRODUCT URL']\n",
"del data['PRICE']\n",
"del data['PRODUCT ID']"
"data = pd.read_csv(\"C:/Users/Agusti Frananda/Documents/PROYEK/myntra-mens-product-dataset/men-products.csv\", delimiter=',', index_col=0)"
]
},
{
......@@ -454,7 +21,7 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
......@@ -470,7 +37,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
......@@ -479,7 +46,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
......@@ -498,7 +65,7 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 5,
"metadata": {},
"outputs": [
{
......@@ -507,7 +74,7 @@
"88348"
]
},
"execution_count": 9,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
......@@ -526,7 +93,7 @@
},
{
"cell_type": "code",
"execution_count": 10,
"execution_count": 6,
"metadata": {},
"outputs": [
{
......@@ -602,7 +169,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 7,
"metadata": {},
"outputs": [
{
......@@ -633,9 +200,18 @@
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 8,
"metadata": {},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Agusti Frananda\\Anaconda3\\lib\\site-packages\\sklearn\\feature_extraction\\text.py:17: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working\n",
" from collections import Mapping, defaultdict\n"
]
}
],
"source": [
"import re\n",
"from nltk.corpus import stopwords\n",
......@@ -667,7 +243,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
......@@ -676,7 +252,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 10,
"metadata": {},
"outputs": [
{
......@@ -703,38 +279,80 @@
" <th>NAME</th>\n",
" <th>CATEGORY</th>\n",
" <th>DESCRIPTION</th>\n",
" <th>FABRIC</th>\n",
" <th>IMAGE</th>\n",
" <th>SIZE</th>\n",
" <th>PRICE</th>\n",
" <th>PRODUCT ID</th>\n",
" <th>WEBSITE</th>\n",
" <th>PRODUCT URL</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>fort collin men red solid pad jacket</td>\n",
" <td>Men Jackets Coats</td>\n",
" <td>Fort Collins Men Red Solid Padded Jacket, For...</td>\n",
" <td>Nylon</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>The model (height 6') is wearing a size M</td>\n",
" <td>1799</td>\n",
" <td>7695293</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/jackets/fort-collins/fo...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>mango man men navi blue tailor slim fit solid ...</td>\n",
" <td>Men Formal Trousers</td>\n",
" <td>MANGO MAN Men Navy Blue Tailored Slim Fit Soli...</td>\n",
" <td>69% polyester, 29% viscose, 2% elastane</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>Tailored slim fit</td>\n",
" <td>3493</td>\n",
" <td>5567522</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/trousers/mango-man/mang...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>arrow men navi blue taper fit check formal tro...</td>\n",
" <td>Men Formal Trousers</td>\n",
" <td>Arrow Men Navy Blue Tapered Fit Checked Formal...</td>\n",
" <td>Polyester and viscose rayon</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>Tapered Fit</td>\n",
" <td>999</td>\n",
" <td>7248825</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/trousers/arrow/arrow-me...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>hane charcoal grey thermal tshirt</td>\n",
" <td>Innerwear &amp; Sleapwear</td>\n",
" <td>Hanes Charcoal Grey Thermal T Shirt, Hanes, T...</td>\n",
" <td>60% polyester, 40% cotton</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>The model (height 6') is wearing a size M</td>\n",
" <td>424</td>\n",
" <td>2159310</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/thermal-tops/hanes/hane...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>hancock men blue regular fit stripe formal shirt</td>\n",
" <td>Formal Shirts</td>\n",
" <td>Hancock Men Blue Regular Fit Striped Formal Sh...</td>\n",
" <td>Cotton</td>\n",
" <td>https://assets.myntassets.com/h_1440,q_100,w_1...</td>\n",
" <td>Regular fit</td>\n",
" <td>759</td>\n",
" <td>7480995</td>\n",
" <td>Myntra</td>\n",
" <td>https://www.myntra.com/shirts/hancock/hancock-...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
......@@ -748,15 +366,43 @@
"3 hane charcoal grey thermal tshirt Innerwear & Sleapwear \n",
"4 hancock men blue regular fit stripe formal shirt Formal Shirts \n",
"\n",
" DESCRIPTION \n",
" DESCRIPTION \\\n",
"0 Fort Collins Men Red Solid Padded Jacket, For... \n",
"1 MANGO MAN Men Navy Blue Tailored Slim Fit Soli... \n",
"2 Arrow Men Navy Blue Tapered Fit Checked Formal... \n",
"3 Hanes Charcoal Grey Thermal T Shirt, Hanes, T... \n",
"4 Hancock Men Blue Regular Fit Striped Formal Sh... "
"4 Hancock Men Blue Regular Fit Striped Formal Sh... \n",
"\n",
" FABRIC \\\n",
"0 Nylon \n",
"1 69% polyester, 29% viscose, 2% elastane \n",
"2 Polyester and viscose rayon \n",
"3 60% polyester, 40% cotton \n",
"4 Cotton \n",
"\n",
" IMAGE \\\n",
"0 https://assets.myntassets.com/h_1440,q_100,w_1... \n",
"1 https://assets.myntassets.com/h_1440,q_100,w_1... \n",
"2 https://assets.myntassets.com/h_1440,q_100,w_1... \n",
"3 https://assets.myntassets.com/h_1440,q_100,w_1... \n",
"4 https://assets.myntassets.com/h_1440,q_100,w_1... \n",
"\n",
" SIZE PRICE PRODUCT ID WEBSITE \\\n",
"0 The model (height 6') is wearing a size M 1799 7695293 Myntra \n",
"1 Tailored slim fit 3493 5567522 Myntra \n",
"2 Tapered Fit 999 7248825 Myntra \n",
"3 The model (height 6') is wearing a size M 424 2159310 Myntra \n",
"4 Regular fit 759 7480995 Myntra \n",
"\n",
" PRODUCT URL \n",
"0 https://www.myntra.com/jackets/fort-collins/fo... \n",
"1 https://www.myntra.com/trousers/mango-man/mang... \n",
"2 https://www.myntra.com/trousers/arrow/arrow-me... \n",
"3 https://www.myntra.com/thermal-tops/hanes/hane... \n",
"4 https://www.myntra.com/shirts/hancock/hancock-... "
]
},
"execution_count": 14,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
......@@ -766,152 +412,207 @@
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Embedding Process"
]
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"import networkx as nx\n",
"import pandas as pd\n",
"import numpy as np\n",
"import random\n",
"from tqdm import tqdm\n",
"from sklearn.decomposition import PCA\n",
"\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
"import networkx as nx \n",
"from node2vec import Node2Vec"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###### Gabungan data pada CATEGORY dan NAME menjadi vocabulary"
"### Kami membuat dua fungsi yang digunakan untuk menghasilkan edge dan graph. "
]
},
{
"cell_type": "markdown",
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"###### Membangun graph menggunakan vocabulary"
"# Fungsi ini akan menghasilkan edges dengan memberikan nama produk dan kategori produk\n",
"def addToGraph(product_name,graph):\n",
" jeniss=data1[data1['NAME']==product_name]['CATEGORY'].values[0].rstrip().lower().split(', ')\n",
" for jenis in jeniss:\n",
" graph.add_edge(product_name.strip(),jenis)\n",
" return graph\n",
"\n",
"# Fungsi ini akan menghasilkan graph untuk semua nama produk\n",
"def createGraph(max_nodes=None):\n",
" graph = nx.Graph()\n",
" for product_name in data1['NAME']:\n",
" graph=addToGraph(product_name,graph)\n",
" return graph"
]
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"G = nx.from_pandas_edgelist(data1, \"CATEGORY\", \"NAME\", edge_attr=True, create_using=nx.Graph())"
"graph=createGraph()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###### Memeriksa jumlah node dalam graph"
"### Kami memeriksa ukuran edge dan graph. "
]
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8125"
"8114"
]
},
"execution_count": 17,
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(G)"
"graph.size()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"8114 8125\n"
]
}
],
"source": [
"print(graph.number_of_edges(),graph.number_of_nodes())"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1\n",
"1\n"
]
}
],
"source": [
"print(graph.degree()['fort collin men red solid pad jacket']) \n",
"print(graph.degree()['hane charcoal grey thermal tshirt']) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###### Kami mendefinisikan fungsi yang akan mengambil node dan panjang path yang dilalui sebagai input. Fungsi akan berjalan melalui node yang terhubung dari input node yang ditentukan random walk. Lalu fungsi akan mengembalikan urutan node yang dilalui."
"# Node Embedding"
]
},
{
"cell_type": "code",
"execution_count": 18,
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"def get_randomwalk(node, path_length):\n",
" \n",
" random_walk = [node]\n",
" \n",
" for i in range(path_length-1):\n",
" temp = list(G.neighbors(node))\n",
" temp = list(set(temp) - set(random_walk)) \n",
" if len(temp) == 0:\n",
" break\n",
"\n",
" random_node = random.choice(temp)\n",
" random_walk.append(random_node)\n",
" node = random_node\n",
" \n",
" return random_walk"
"from node2vec import Node2Vec"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###### Contoh fungsi untuk: Men Formal Trousers"
"### Kita menghitung probabilitas yang ada dan melakukan generate walks."
]
},
{
"cell_type": "code",
"execution_count": 19,
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Men Formal Trousers', 'invictu men black slim fit solid formal trouser']"
"name": "stderr",
"output_type": "stream",
"text": [
"Computing transition probabilities: 100%|█████████████████████████████████████████| 8125/8125 [01:11<00:00, 114.25it/s]\n",
"Generating walks (CPU: 1): 100%|███████████████████████████████████████████████████████| 10/10 [04:53<00:00, 29.35s/it]\n"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"get_randomwalk('Men Formal Trousers', 10)"
"node2vec = Node2Vec(graph, dimensions=64, walk_length=16, num_walks=10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###### Kami menentukan panjang path untuk dilintasi dengan nilai 10. Kami akan menangkap random walk untuk semua node dalam dataset kami."
"### Kemudian kita melakukan embedd pada node yang ada."
]
},
{
"cell_type": "code",
"execution_count": 20,
"execution_count": 19,
"metadata": {},
"outputs": [
"outputs": [],
"source": [
"model = node2vec.fit(window=5, min_count=1)"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|████████████████████████████████████████████████████████████████████████████| 8125/8125 [00:06<00:00, 1289.47it/s]\n"
"cell_type": "markdown",
"metadata": {},
"source": [
"### Untuk mendapatkan vektor pada sebuah node, misalkan node ' fort collin men red solid pad jacket', kita menggunakan fungsi get_vector."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"40625"
"array([ 0.33467975, 0.36962217, -0.16023605, -0.69580764, 0.06403042,\n",
" -0.34294704, 0.18420285, 0.6811131 , 0.6384392 , 0.1940261 ,\n",
" 0.37663004, 0.6949545 , 0.21746206, -0.22592893, -0.7758991 ,\n",
" 0.10963089, 0.43471316, -0.15162756, -0.37648994, -0.53654075,\n",
" 0.00918706, 0.40313542, 0.9537984 , 0.01509836, 0.0682877 ,\n",
" 0.14361215, 0.80348974, -0.05326444, -0.42685115, 0.34212387,\n",
" -0.34080467, 0.3860952 , -0.18163332, 0.31680962, -0.00545054,\n",
" -0.16639371, 0.06881496, -0.05638814, 0.17932905, 0.48480722,\n",
" -0.06225639, 0.33184448, 0.8113846 , 0.73284787, 0.3822531 ,\n",
" 0.5152875 , -0.5052524 , -0.3848879 , -0.3046049 , -0.0335528 ,\n",
" 0.13987453, -0.25996637, 0.14472592, 0.29438058, 0.29898086,\n",
" 0.28543732, -0.06339 , 0.49771687, -0.35416073, 0.45105803,\n",
" -0.19598538, 0.7548906 , 0.09085236, -0.00890904], dtype=float32)"
]
},
"execution_count": 20,
......@@ -920,42 +621,53 @@
}
],
"source": [
"# get list of all nodes from the graph\n",
"all_nodes = list(G.nodes())\n",
"\n",
"random_walks = []\n",
"for n in tqdm(all_nodes):\n",
" for i in range(5):\n",
" random_walks.append(get_randomwalk(n,10))\n",
" \n",
"# count of sequences\n",
"len(random_walks)"
"model.wv.get_vector('fort collin men red solid pad jacket')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###### Dengan panjang path yang kami atur dengan nilai 10, maka didapatkan 40.625 urutan random walk. Urutan ini dapat digunakan sebagai input ke model skip-gram dan mengekstraksi bobot yang dipelajari oleh model (node embedding)."
"### Array yang ada memiliki panjang 64 karena kami mendefinisikan dimensi dengan 64. "
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"array([ 0.6542452 , 0.22359778, -0.05618238, -0.9710106 , -0.21859872,\n",
" -0.0270855 , -0.40249804, -0.5107962 , -0.22931495, 0.48649913,\n",
" -0.4123306 , 0.2588174 , 0.19859572, 0.23453775, 0.21417029,\n",
" 0.07129968, 0.45388952, -0.37034434, -0.14227642, -0.2232346 ,\n",
" 0.42507643, 0.77102953, 0.6156954 , -0.00894402, 0.24595277,\n",
" -0.02483858, 0.47350717, -0.20732524, -0.0052758 , 0.42064896,\n",
" -0.17044549, 0.06242326, -1.0036873 , -0.14818276, -0.05248806,\n",
" 0.226771 , 0.53806144, 0.5537965 , 0.17830743, -0.08320967,\n",
" 0.0579484 , -0.06027835, 0.131995 , -0.24165393, -0.2310941 ,\n",
" 0.3328962 , -0.0345995 , -0.03031306, -0.16735949, 0.24540676,\n",
" -0.3078893 , -0.17182648, -0.35872027, 0.11151022, 0.13315558,\n",
" 0.2319816 , -0.5295256 , 0.15908487, -0.05684872, 0.26322013,\n",
" 0.0785365 , 0.5355674 , 0.6292052 , -0.29569113], dtype=float32)"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from gensim.models import Word2Vec\n",
"\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
"model.wv.get_vector('hane charcoal grey thermal tshirt')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###### Lalu kami melatih model skip-gram dengan random walk."
"### Lalu kami dapat mengidentifikasi node yang paling mirip menggunakan fungsi most_similar. "
]
},
{
......@@ -966,7 +678,16 @@
{
"data": {
"text/plain": [
"(1778978, 2439200)"
"[('fruit loom men pack assort brief mhb pc', 0.9996505975723267),\n",
" ('fcuk marqu men grey melang hip brief cbr', 0.9995201230049133),\n",
" ('urban scottish men pack print boxer usbx', 0.999382734298706),\n",
" ('bonjour men pack white anklelength sock', 0.9992637038230896),\n",
" ('gritston men navi blue white print innerwear vest', 0.9992287755012512),\n",
" ('jockey modern classic men grey melang modern trunk', 0.9991569519042969),\n",
" ('vimal black loung short c black', 0.9991161823272705),\n",
" ('jockey men blue solid loung short', 0.9991004467010498),\n",
" ('vimal jonney men pack jogger b', 0.9990301728248596),\n",
" ('roadster men pack white colourblock anklelength sock', 0.9990173578262329)]"
]
},
"execution_count": 22,
......@@ -975,148 +696,302 @@
}
],
"source": [
"# train skip-gram (word2vec) model\n",
"model = Word2Vec(window = 4, sg = 1, hs = 0,\n",
" negative = 10, # for negative sampling\n",
" alpha=0.03, min_alpha=0.0007,\n",
" seed = 14)\n",
"\n",
"model.build_vocab(random_walks, progress_per=2)\n",
"\n",
"model.train(random_walks, total_examples = model.corpus_count, epochs=20, report_delay=1)"
"model.wv.most_similar('hane charcoal grey thermal tshirt')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###### Setiap node dalam graph diwakili oleh vektor dengan panjang tetap (100). Sebagai contoh kita cari paling mirip dengan: \"Formal Shirts\"."
"### Lalu kami membuat fungsi pencarian nama produk dengan memberikan masukkan berupa nama dan kategori produk yang diberikan."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"def print_similiar(name):\n",
" for node, _ in model.wv.most_similar(name):\n",
" print(node)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Lalu kami melakukan pencarian menggunakan fungsi print_similiar."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[('peter england men grey solid slim fit formal shirt', 0.8732825517654419),\n",
" ('peter england men orang slim fit solid formal shirt', 0.8653634786605835),\n",
" ('arrow new york men blue white slim fit check formal shirt',\n",
" 0.864309549331665),\n",
" ('van heusen men creamcolour regular fit solid formal shirt',\n",
" 0.8582490682601929),\n",
" ('van heusen men brown purpl slim fit selfdesign formal shirt',\n",
" 0.8579122424125671),\n",
" ('invictu men blue slim fit print formal shirt', 0.8563601970672607),\n",
" ('red tape men black regular fit solid formal shirt', 0.8562281131744385),\n",
" ('rg design men blue slim fit stripe linen formal shirt', 0.8559995293617249),\n",
" ('van heusen men lavend slim fit check formal shirt', 0.8549967408180237),\n",
" ('jainish men orang classic slim fit solid formal shirt', 0.8544467091560364)]"
"name": "stdout",
"output_type": "stream",
"text": [
"fruit loom men pack assort brief mhb pc\n",
"fcuk marqu men grey melang hip brief cbr\n",
"urban scottish men pack print boxer usbx\n",
"bonjour men pack white anklelength sock\n",
"gritston men navi blue white print innerwear vest\n",
"jockey modern classic men grey melang modern trunk\n",
"vimal black loung short c black\n",
"jockey men blue solid loung short\n",
"vimal jonney men pack jogger b\n",
"roadster men pack white colourblock anklelength sock\n"
]
}
],
"source": [
"print_similiar('hane charcoal grey thermal tshirt')"
]
},
"execution_count": 23,
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"fort collin navi panel jacket\n",
"forev men oliv green print hood tailor jacket\n",
"hrx hrithik roshan men grey solid puffer jacket\n",
"mast harbour navi hood tailor jacket\n",
"wrogn men oliv green solid bomber\n",
"fort collin men black solid lightweight bomber\n",
"rdstr men brown solid biker jacket\n",
"statu quo men red solid revers navi blue pad jacket\n",
"roadster men black solid quilt jacket\n",
"us polo assn black jacket\n"
]
}
],
"source": [
"print_similiar('fort collin men red solid pad jacket')"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"fort collin men mustard yellow navi solid revers tailor jacket\n",
"wildcraft men blue solid lightweight puffer micro pack jacket\n",
"spiritu pantaloon men black solid puffer jacket\n",
"asic men red self design bomber jacket\n",
"wrangler men black solid biker leather jacket\n",
"moda rapido men black solid biker jacket\n",
"fort collin men black print bomber\n",
"mast harbour men black solid sporti jacket\n",
"adida origin men blue windsor solid sporti jacket\n",
"showoff men grey print biker jacket\n"
]
}
],
"source": [
"model.similar_by_word('Formal Shirts')"
"print_similiar('roadster men navi blue solid pad jacket')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Edge Embedding"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"###### Contoh kita cari paling mirip dengan: \"Accesories\""
"### Kami juga dapat melakukan embedding terhadap edge dan embedding tersebut dapat digunakan untuk klasifikasi. "
]
},
{
"cell_type": "code",
"execution_count": 24,
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"from node2vec.edges import HadamardEmbedder\n",
"edges_embs = HadamardEmbedder(keyed_vectors=model.wv)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Kemudian, kami mengambil vektor dengan menentukan 2 node yang terkait. "
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[('classic cl icon tape black cap', 0.8467520475387573),\n",
" ('tossido grey check pattern tie', 0.8429974317550659),\n",
" ('tommi hilfig men brown solid belt', 0.8407713174819946),\n",
" ('tommi hilfig men navi blue brown revers solid leather belt',\n",
" 0.8403265476226807),\n",
" ('lino perro black solid broad tie', 0.8362069129943848),\n",
" ('loui philipp men navi blue brown solid revers leather belt',\n",
" 0.8343643546104431),\n",
" ('hrx hrithik roshan unisex charcoal grey print beani', 0.8334780931472778),\n",
" ('knotyy black solid unisex beani', 0.8293745517730713),\n",
" ('invictu blue coffe brown check tie', 0.8290094137191772),\n",
" ('scharf men brown solid leather belt', 0.8253196477890015)]"
"array([ 8.1853047e-02, 1.3257000e-01, 4.7976185e-02, 6.3643575e-01,\n",
" 6.9612083e-03, 1.4790654e-01, 2.1303291e-02, 5.3950590e-01,\n",
" 4.4392282e-01, 4.4744052e-02, 1.8197232e-01, 5.7440823e-01,\n",
" 5.1216129e-02, 7.0402399e-02, 7.2606945e-01, 1.7650515e-02,\n",
" 1.8920942e-01, 2.9360646e-02, 1.7966431e-01, 3.3843735e-01,\n",
" 1.0418275e-03, 1.6742657e-01, 1.0564598e+00, 1.8955929e-04,\n",
" 2.3029256e-03, 2.7427938e-02, 8.0003399e-01, 8.7789987e-04,\n",
" 1.9602896e-01, 9.9727266e-02, 1.4144428e-01, 2.0590650e-01,\n",
" 2.5916746e-02, 7.3285177e-02, 3.4200388e-04, 4.0628880e-02,\n",
" 3.6775272e-03, 1.0696777e-02, 5.1029425e-02, 2.7999222e-01,\n",
" 3.1207399e-03, 1.5505475e-01, 6.9272459e-01, 5.1940334e-01,\n",
" 1.4708586e-01, 3.0253154e-01, 3.5121724e-01, 1.6893889e-01,\n",
" 1.0498933e-01, -2.3086402e-03, 1.1535646e-02, 8.6708404e-02,\n",
" 2.7462170e-02, 8.3347909e-02, 5.4472916e-02, 1.2289284e-01,\n",
" -6.7788956e-04, 2.8518111e-01, 1.3119376e-01, 2.1828370e-01,\n",
" 3.6641400e-02, 6.1583745e-01, 1.3370697e-02, -1.5860068e-04],\n",
" dtype=float32)"
]
},
"execution_count": 24,
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.similar_by_word('Accesories')"
"edges_embs[('roadster men navi blue solid pad jacket', 'fort collin men red solid pad jacket')]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Ternyata edge yang paling mirip dapat digunakan untuk melakukan prediksi edge yang hilang."
]
},
{
"cell_type": "code",
"execution_count": 25,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"terms = ['Formal Shirts', 'Accesories', \n",
" 'Casual Shirts','Men Casual Trousers', 'Men Formal Trousers', \n",
" 'Men Jackets Coats','Men Swimwear', 'Men Suits']"
"edges_kv = edges_embs.as_keyed_vectors()\n",
"edges_kv.most_similar(str(('roadster men navi blue solid pad jacket', 'fort collin men red solid pad jacket')))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Graph Embedding"
]
},
{
"cell_type": "code",
"execution_count": 26,
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"def plot_nodes(word_list):\n",
" X = model[word_list]\n",
" \n",
" # reduce dimensions to 2\n",
" pca = PCA(n_components=2)\n",
" result = pca.fit_transform(X)\n",
" \n",
" \n",
" plt.figure(figsize=(12,9))\n",
" # create a scatter plot of the projection\n",
" plt.scatter(result[:, 0], result[:, 1])\n",
" for i, word in enumerate(word_list):\n",
" plt.annotate(word, xy=(result[i, 0], result[i, 1]))\n",
" \n",
" plt.show()"
"def node2vec_walk(self, walk_length, start_node):\n",
" G = self.G \n",
" alias_nodes = self.alias_nodes \n",
" alias_edges = self.alias_edges\n",
" walk = [start_node]\n",
" while len(walk) < walk_length: \n",
" cur = walk[-1] \n",
" cur_nbrs = list(G.neighbors(cur)) \n",
" if len(cur_nbrs) > 0: \n",
" if len(walk) == 1: \n",
" walk.append(cur_nbrs[alias_sample(alias_nodes[cur][0], alias_nodes[cur][1])]) \n",
" else: \n",
" prev = walk[-2] \n",
" edge = (prev, cur) \n",
" next_node = cur_nbrs[alias_sample(alias_edges[edge][0],alias_edges[edge][1])] \n",
" walk.append(next_node) \n",
" else: \n",
" break\n",
" return walk"
]
},
{
"cell_type": "code",
"execution_count": 27,
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"def get_alias_edge(self, t, v):\n",
" G = self.G \n",
" p = self.p \n",
" q = self.q\n",
" unnormalized_probs = [] \n",
" for x in G.neighbors(v): \n",
" weight = G[v][x].get('weight', 1.0)# w_vx \n",
" if x == t:# d_tx == 0 \n",
" unnormalized_probs.append(weight/p) \n",
" elif G.has_edge(x, t):# d_tx == 1 \n",
" unnormalized_probs.append(weight) \n",
" else:# d_tx == 2 \n",
" unnormalized_probs.append(weight/q) \n",
" norm_const = sum(unnormalized_probs) \n",
" normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs]\n",
" return create_alias_table(normalized_probs)\n",
"\n",
"def preprocess_transition_probs(self):\n",
" G = self.G\n",
" alias_nodes = {} \n",
" for node in G.nodes(): \n",
" unnormalized_probs = [G[node][nbr].get('weight', 1.0) for nbr in G.neighbors(node)] \n",
" norm_const = sum(unnormalized_probs) \n",
" normalized_probs = [float(u_prob)/norm_const for u_prob in unnormalized_probs] \n",
" alias_nodes[node] = create_alias_table(normalized_probs)\n",
" alias_edges = {}\n",
" for edge in G.edges(): \n",
" alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])\n",
" self.alias_nodes = alias_nodes \n",
" self.alias_edges = alias_edges\n",
" return"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAIICAYAAACsDWLdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzde1zW5eH/8fcFEiCWZllfJRVdiuEN3CiozfNh4jnTr6WWRa51mpb11dKattn8zqWbba7WwSk9yqHNPDSxUhPyUKmgKKh5KFFDf44sDBQc4PX7w7y/MtH04vaUr+fj4WPen/vzua6L2629+njxwVhrBQAAAOD8BVzqBQAAAABXKmIaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR9UuxaQ33nijjYiIuBRTAwAA4CqSmZn5tbW2zoUa/5LEdEREhDIyMi7F1AAAALiKGGP2XMjx2eYBAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhrnZcGCBTLG6PPPP7/US/GZMGGCli9ffqmXAQAArkLENM5LSkqK2rVrpzlz5lzqpUiSysvLNXHiRHXr1u1SLwUAAFyFiGmcs6KiIq1Zs0Z/+9vfKsT0iy++qOjoaMXGxmrs2LGSpF27dqlbt26KjY1VixYt9MUXX0iSpkyZooSEBMXExOj555+XJB05ckS9e/dWbGysPB6P5s6dK0n66KOPFBcXp+joaA0fPlzHjh2TJEVERGjixIlq166d/vGPfygpKUnz5s2TJGVmZqpjx45q2bKlEhMTdeDAAUnSn//8Z0VFRSkmJkaDBw++OB8YAAD40at2qReAK8fChQvVo0cPNW3aVLVr19aGDRt08OBBLVy4UGvXrlX16tX1zTffSJLuuecejR07VnfeeadKSkp0/PhxLV26VDt37tS6detkrVW/fv20cuVK5efnq169ekpNTZUkHT58WCUlJUpKStJHH32kpk2b6r777tNf//pXjRo1SpIUEhKi1atXS5I++OADSVJpaalGjhypRYsWqU6dOpo7d66ee+45zZw5U5MnT9bu3bsVHBysgoKCS/DpAQCAHyNiGme1cGOepny4XfsLilWw8C964oknJEmDBw9WSkqKjh8/rgceeEDVq1eXJNWuXVuFhYXKy8vTnXfeKelE+ErS0qVLtXTpUsXFxUk6cad7586dat++vUaPHq1nnnlGffr0Ufv27bVp0yY1atRITZs2lSTdf//9evnll30xfffdd5+21u3btysnJ0c/+9nPJJ3YAlK3bl1JUkxMjO655x71799f/fv3v1AfFwAAuMoQ0zijhRvzNG5+topLy1Ve/J0Of7FRk8aO0isvPK3gQMkYo4EDB8oYU+E6a22l41lrNW7cOD388MOnvZeZmaklS5Zo3Lhx6t69u/r163fWtYWFhVU6fvPmzfXpp5+e9l5qaqpWrlyp9957Ty+88IK2bNmiatX4rz8AAKga9kzjjKZ8uF3FpeWSpKPb1yiseReFPzpTTR5/U/v27VOjRo1Uu3ZtzZw5U0ePHpUkffPNN7ruuut0yy23aOHChZKkY8eO6ejRo0pMTNTMmTNVVFQkScrLy9O//vUv7d+/X9WrV9e9996r0aNHa8OGDWrWrJlyc3O1a9cuSdJbb72ljh07nnW9kZGRys/P98V0aWmptmzZouPHj2vfvn3q3LmzXnzxRRUUFPjWAAAAUBXcmsMZ7S8o9v3+yNaPVbPNoArHBw4cqG3btqlfv36Kj4/XNddco169eul///d/9dZbb+nhhx/WhAkTFBQUpH/84x/q3r27tm3bpttvv12SVKNGDb399tvatWuXxowZo4CAAAUFBemvf/2rQkJCNGvWLA0aNEhlZWVKSEjQI488ctb1XnPNNZo3b54ef/xxHT58WGVlZRo1apSaNm2qe++9V4cPH5a1Vk8++aRq1ap1gT41AABwNTFn+iv5Cyk+Pt5mZGRc9HlxftpOXqG8U4L6pPBaoVoztsslWBEAAMD5McZkWmvjL9T4bPPAGY1JjFRoUGCFY6FBgRqTGHmJVgQAAHB58ds2D2NMoKQMSXnW2j7+GheXTv+4cEnyPc2jXq1QjUmM9B0HAAC42vlzz/QTkrZJus6PY+IS6x8XTjwDAACcgV+2eRhjbpHUW9IMf4wHAAAAXAn8tWf6JUlPSzp+phOMMQ8ZYzKMMRn5+fl+mhYAAAC4dKoc08aYPpL+Za3NPNt51trXrbXx1tr4OnXqVHVaAAAA4JLzx53ptpL6GWNyJc2R1MUY87YfxgUAAAAua1WOaWvtOGvtLdbaCEmDJa2w1t5b5ZUBAAAAlzmeMw0AAAA48uuPE7fWpktK9+eYAAAAwOWKO9MAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAAACAoyrHtDEmxBizzhizyRizxRjzG38sDAAAALjcVfPDGMckdbHWFhljgiStNsa8b639zA9jAwAAAJetKse0tdZKKvr+ZdD3v2xVxwUAAAAud37ZM22MCTTGZEn6l6Rl1tq1lZzzkDEmwxiTkZ+f749pAQAAgEvKLzFtrS231nol3SKplTHGU8k5r1tr46218XXq1PHHtAAAAMAl5deneVhrCySlS+rhz3EBAACAy5E/nuZRxxhT6/vfh0rqJunzqo4LAAAAXO788TSPupLeNMYE6kScv2OtXeyHcQEAAIDLmj+e5rFZUpwf1gIAAABcUfgJiAAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAICjKse0Maa+MSbNGLPNGLPFGPOEPxYGAAAAXO6q+WGMMkn/Y63dYIy5VlKmMWaZtXarH8YGAAAALltVvjNtrT1grd3w/e8LJW2TFF7VcQEAAIDLnV/3TBtjIiTFSVrrz3EBAACAy5HfYtoYU0PSu5JGWWu/q+T9h4wxGcaYjPz8fH9NCwAAAFwyfolpY0yQToT0bGvt/MrOsda+bq2Nt9bG16lTxx/TAgAAAJeUP57mYST9TdI2a+0fq74kAAAA4MrgjzvTbSUNk9TFGJP1/a9efhgXAAAAuKxV+dF41trVkowf1gIAAABcUfgJiAAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdPAFeb//b//p8GDB+snP/mJoqKi1KtXL+3YseOCz5uenq4+ffqcdvzo0aO65557FB0dLY/Ho3bt2qmoqEi5ubnyeDyVjjVhwgQtX7680veSk5O1f/9+v64dAIALpdqlXgCAc2et1Z133qn7779fc+bMkSRlZWXp4MGDatq06SVZ05/+9CfdfPPNys7OliRt375dQUFBZ71m4sSJlR4vLy9XcnKyPB6P6tWr5/e1AgDgb9yZBq4gaWlpCgoK0iOPPOI75vV61b59exUVFalr165q0aKFoqOjtWjRIknSkSNH1Lt3b8XGxsrj8Wju3LmSpIiICH399deSpIyMDHXq1EmStG7dOv30pz9VXFycfvrTn2r79u1nXdOBAwcUHh7uex0ZGang4GBJJ+L4F7/4hZo3b67u3buruLhYkpSUlKR58+b51jFx4kS1a9dOKSkpysjI0D333COv16vi4mKNHTtWUVFRiomJ0ejRo/3wKQIA4D/cmQauIDk5OWrZsmWl74WEhGjBggW67rrr9PXXX6tNmzbq16+fPvjgA9WrV0+pqamSpMOHD591jmbNmmnlypWqVq2ali9frmeffVbvvvvuGc8fPny4unfvrnnz5qlr1666//771aRJE0nSzp07lZKSojfeeEN33XWX3n33Xd17772Vrn316tWSpBkzZmjq1KmKj4/XN998owULFujzzz+XMUYFBQXn9DkBAHCxcGcauAIs3JintpNX6DfvbdHc9fu0cGPeaedYa/Xss88qJiZG3bp1U15eng4ePKjo6GgtX75czzzzjFatWqWaNWtKkvbs2aNOnTrJ6/Vq6NChKikpkXQitgcNGiSPx6Mnn3xSW7ZsOevavF6vvvzyS40ZM0bffPONEhIStG3bNklSo0aN5PV6JUktW7ZUbm6uJGnXrl2aMWOGb4y7775bknTw4EFlZ2dryJAhioqK0tChQxUSEqLevXurZcuWql69+mnzP/jgg9q6dWula3vppZd09OjRs64fAICqIKaBy9zCjXkaNz9beQXFqnZjA32z53ONm599WlDPnj1b+fn5yszMVFZWlm6++WaVlJSoadOmyszMVHR0tMaNG+fbr2yM0YoVK5SVlaWZM2cqJCREkjR+/Hh17txZOTk5+uc//+mL7JPKyspOW2ONGjU0YMAAvfLKK7r33nu1ZMkSSfJt95CkwMDASq+VpLCwMEknvjHx+uuvV0pKirZu3aoXX3xR69atU4cOHXTw4EH16NHjtGtnzJihqKio046Xl5cT0wCAC46YBi5zUz7cruLScklSSMNY2fJS/Wt9qqZ8eGIv8/r16/Xxxx/r8OHDuummmxQUFKS0tDTt2bNHkrR//35Vr15d9957r0aPHq0NGzZIOhHTmZmZkuTbxlFSUqK0tDRNnTpVcXFxev755yWdeMLG888/r/Xr16t79+5KT09Xx44dddddd6l+/foaNWqUZs+erfj4eCUnJ/siurCwUK1bt1ZcXJxee+01FRUVnfVrPXDggGrVqqXCwkJJUuPGjXX48GG1adNGDRs21OrVq9WsWTPdc889stZKkjp16qSMjAxJJ6J+woQJat26tSZNmqT9+/erc+fO6ty5s8rLy5WUlCSPx6Po6GhNmzbNP39AAICrGnumgcvc/oJi3++NMapz53P69qM3tO7389T8rdqKiIjQSy+9pObNm6tv376Kj4+X1+tVs2bNJEnZ2dkaM2aMAgICFBQUpL/+9a+STmwL6d+/v4KCglS3bl2Fh4fr5Zdflsfj0c6dO2WM0cKFC1WrVi1J0tatW9WiRQt9+OGHSk9P16ZNm7Rt2zYtWbJEjzzyiGrXrq0bb7xRrVu31s6dOyVJ1atX12effSZjjAYNGqQ1a9ac9Wv95S9/qQEDBqh3796qWbOmlixZoocffliHDh1Sbm6upk6dqieeeEJt27bVmjVr1K5duwrXHzlyRB6Px3f3febMmUpLS9ONN96ozMxM5eXlKScnR5LYfw0A8AtiGrjM1asVqrxTgrratTeoTv+xCq8VqjVju1Q499NPPz3t+oiICCUmJko6sWXkiQ+3a/+8VJmgYM39bJf6x/3fkzjuvPNO/c///I+6dDkxbvv27fXyyy9rw4YN6tOnj2bNmuU7NyEhQXXr1tXPf/5zvfnmm/rd736ntm3basWKFfrzn/+siIgIvfPOO0pMTNSBAwf073//W40aNZJ0Yp/zybvJJ/dRS1JiYqL27dunDz74QO+//7569OihnJwcbdmyRZMmTdKTTz4p6cQ+7dzc3NNiOjAwUAMHDqz0c2zcuLG+/PJLjRw5Ur1791b37t3P/sEDAHAO2OYBXObGJEYqNCiwwrHQoECNSYw8r3FO3XttJVmr0/Zen9w6UZmT+5pPOnU/dEBAgO91QECAb2/0yJEjNWLECGVnZ+u11147bf91ZWrXrq2hQ4fqrbfeUkJCglauXHnafGfafx0SEqLAwMDTjkvS9ddfr02bNqlTp056+eWX9eCDD/7gWgAA+CHENHCZ6x8Xrt8NiFZ4rVAZSeG1QvW7AdEV7iifi1P3Xp9UXFru23stSR06dNDs2bMlSTt27NDevXsVGXl+0X6qw4cP+55B/eabb/7g+StWrPB9w2BhYaG++OILNWjQwHn+a6+91rf/+uuvv9bx48c1cOBAvfDCC7694wAAVAXbPIArQP+48POO5/906t7rMx1/7LHH9Mgjjyg6OlrVqlWr8M2ELn79619r0KBBCg8PV5s2bbR79+6znp+ZmakRI0aoWrVqOn78uB588EElJCQoPT3daf6HHnpIPXv2VN26dfXSSy/pgQce0PHjxyVJv/vd75zGBADgVOZsf617ocTHx9uT+yUBXBxtJ6+osPf6pMr2XgMA8GNhjMm01sZfqPHZ5gFcJfy19xoAAPwftnkAV4mT20SmfLhd+wuKVa9WqMYkRlZ5+wgAAFczYhq4ivhj7zUAAPg/bPMAAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAcBUzxmjYsGG+12VlZapTp4769Onjl/EXL16suLg4xcbGKioqSq+99to5Xffee+9p8uTJflkDAFxI/DhxALiKhYWFKScnR8XFxQoNDdWyZcsUHu6fHzlfWlqqhx56SOvWrdMtt9yiY8eOKTc395yu7devn/r16+eXdfhDWVmZqlXj/zIBnI470wBwlevZs6dSU1MlSSkpKRoyZIjvvSNHjmj48OFKSEhQXFycFi1aJElKTk7WgAED1KNHDzVp0kRPP/30aeMWFhaqrKxMN9xwgyQpODhYkZGRKi8vV+PGjWWtVUFBgQICArRy5UpJUvv27bVr1y4lJydrxIgRkqSkpCQ9+uij6ty5sxo3bqyPP/5Yw4cP12233aakpCRJ0jvvvKOnnnpKkvSnP/1JjRs3liR98cUXateunSQpMzNTHTt2VMuWLZWYmKgDBw5Ikt544w0lJCQoNjZWAwcO1NGjR33zPvXUU+rcubOeeeYZ/33gAH5UiGkAuMoNHjxYc+bMUUlJiTZv3qzWrVv73ps0aZK6dOmi9evXKy0tTWPGjNGRI0ckSVlZWZo7d66ys7M1d+5c7du3r8K4tWvXVr9+/dSwYUMNGTJEs2fP1vHjxxUYGKimTZtq69atWr16tVq2bKlVq1bp2LFj+uqrr3TrrbeetsZvv/1WK1as0LRp09S3b189+eST2rJli7Kzs5WVlaUOHTpo1apVkqRVq1bphhtuUF5enlavXq327durtLRUI0eO1Lx585SZmanhw4frueeekyQNGDBA69ev16ZNm3Tbbbfpb3/7m2/eHTt2aPny5frDH/7g988dwI8Df2cFAFe5mJgY5ebmKiUlRb169arw3tKlS/Xee+9p6tSpkqSSkhLt3btXktS1a1fVrFlTkhQVFaU9e/aofv36Fa6fMWOGsrOztXz5ck2dOlXLli1TcnKy2rdvr5UrV2r37t0aN26c3njjDXXs2FEJCQmVrrFv374yxig6Olo333yzoqOjJUnNmzdXbm6uvF6vioqKVFhYqH379mno0KFauXKlVq1apQEDBmj79u3KycnRz372M0lSeXm56tatK0nKycnRr371KxUUFKioqEiJiYm+eQcNGqTAwMCqfsQAfsSIaQC4yizcmKcpH27X/oJiFZeWa+HGPPXr10+jR49Wenq6Dh065DvXWqt3331XkZGRFcZYu3atgoODfa8DAwNVVlZW6XzR0dGKjo7WsGHD1KhRI19Mv/rqq9q/f78mTpyoKVOmKD09XR06dKh0jJNzBQQEVJg3ICDAN+/tt9+uWbNmKTIyUu3bt9fMmTP16aef6g9/+IP27t2r5s2b69NPPz1t7KSkJC1cuFCxsbFKTk5Wenq6772wsLAf+DQBXO3Y5gEAV5GFG/M0bn628gqKZSVZK42bn616rXpqwoQJvju+JyUmJmr69Omy1kqSNm7ceM5zFRUVVQjTrKwsNWzYUJLUunVrffLJJwoICFBISIi8Xq9ee+01tW/f3vlr69Chg6ZOnaoOHTooLi5OaWlpCg4OVs2aNRUZGan8/HxfTJeWlmrLli2STuztrlu3rkpLSzV79mzn+QFcnbgzDQBXkSkfbldxaXmFY8Wl5ZqVVag1Y5847fzx48dr1KhRiomJkbVWERERWrx48TnNZa3Viy++qIcfflihoaEKCwtTcnKypBN3muvXr682bdpIOvGNhykpKafF/Plo37699u3bpw4dOigwMFD169dXs2bNJEnXXHON5s2bp8cff1yHDx9WWVmZRo0apebNm+uFF15Q69at1bBhQ0VHR6uwsNB5DQCuPubk3YaLKT4+3mZkZFz0eQHgatdobKoq+6e+kbR7cu+LvRwAuOCMMZnW2vgLNb5ftnkYY2YaY/5ljMnxx3gAgAujXq3Q8zoOADg7f+2ZTpbUw09jAQAukDGJkQoNqvh0itCgQI1JjDzDFQCAs/HLnmlr7UpjTIQ/xgIAXDj94078dMOTT/OoVytUYxIjfccBAOfnon0DojHmIUkPSVKDBg0u1rQAgP/QPy6ceAYAP7loj8az1r5urY231sbXqVPnYk0LAAAAXDA8ZxoAAABwREwDAAAAjvz1aLwUSZ9KijTGfGWM+bk/xgUAAAAuZ/56mscQf4wDAAAAXEnY5gEAAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA48ktMG2N6GGO2G2N2GWPG+mNMAAAA4HJX5Zg2xgRKellST0lRkoYYY6KqOi4AAABwufPHnelWknZZa7+01v5b0hxJd/hhXAAAAOCy5o+YDpe075TXX31/rAJjzEPGmAxjTEZ+fr4fpgUAAAAuLX/EtKnkmD3tgLWvW2vjrbXxderU8cO0AAAAwKXlj5j+SlL9U17fImm/H8YFAAAALmv+iOn1kpoYYxoZY66RNFjSe34YFwAAALisVavqANbaMmPMCEkfSgqUNNNau6XKKwMAAAAuc1WOaUmy1i6RtMQfYwEAAABXCn4CIgAAAOCImAYAAAAcEdMAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAABecMUbDhg3zvS4rK1OdOnXUp08fv4y/ePFixcXFKTY2VlFRUXrttdd+aD31jDHzvv+91xjTy2Xeai4XAQAAAOcjLCxMOTk5Ki4uVmhoqJYtW6bw8HC/jF1aWqqHHnpI69at0y233KJjx44pNzf3rNdYa/dL+u/vX3olxUtacr5zc2caAAAAF0XPnj2VmpoqSUpJSdGQIUN87x05ckTDhw9XQkKC4uLitGjRIklScnKyBgwYoB49eqhJkyZ6+umnTxu3sLBQZWVluuGGGyRJwcHBioyMPPl2hDHmZDTLGFP0/X9GGGNyjDHXSJoo6W5jTJYx5m5jTMfvf59ljNlojLn2TF8TMQ0AAICLYvDgwZozZ45KSkq0efNmtW7d2vfepEmT1KVLF61fv15paWkaM2aMjhw5IknKysrS3LlzlZ2drblz52rfvn0Vxq1du7b69eunhg0basiQIZo9e7aOHz9+Tmuy1v5b0gRJc621XmvtXEmjJf3SWuuV1F5S8ZmuJ6YBAABwQSzcmKe2k1eo0dhUFZeW68vyG5Sbm6uUlBT16lVxi/LSpUs1efJkeb1ederUSSUlJdq7d68kqWvXrqpZs6ZCQkIUFRWlPXv2nDbXjBkz9NFHH6lVq1aaOnWqhg8fXpWlr5H0R2PM45JqWWvLznQie6YBAADgdws35mnc/KA83JYAAB8NSURBVGwVl5ZLkqyVxs3Pljehk0aPHq309HQdOnTId761Vu++++6p2zMkSWvXrlVwcLDvdWBgoMrKKm/b6OhoRUdHa9iwYWrUqJGSk5Mlyer7G8jGGCPpmh9au7V2sjEmVVIvSZ8ZY7pZaz+v7Nwq3Zk2xgwyxmwxxhw3xsRXZSwAAAD8eEz5cLsvpE8qLi3XzloJmjBhgqKjoyu8l5iYqOnTp8taK0nauHHjOc9VVFSk9PR03+usrCw1bNjw5Mt/S2r5/e/vkBRUyRCFknz7oo0xP7HWZltrfy8pQ1KzM81d1TvTOZIGSDr7s0cAAABwVdlfUPk240O2hp544onTjo8fP16jRo1STEyMrLWKiIjQ4sWLz2kua61efPFFPfzwwwoNDVVYWNjJu9KSlC+pozFmnaSPJB2pZIg0SWONMVmSfiepnTGms6RySVslvX+muc3J+q8KY0y6pNHW2oxzOT8+Pt5mZJzTqQAAALgCtZ28QnmVBHV4rVCtGdvloq3DGJNprb1gOygu2jcgGmMeMsZkGGMy8vPzL9a0AAAAuATGJEYqNCiwwrHQoECNSYw8wxVXph/c5mGMWS7pvyp56zlr7aJzncha+7qk16UTd6bPeYUAAAC44vSPO/EDWaZ8uF37C4pVr1aoxiRG+o7/WPxgTFtru12MhQAAAODHpX9c+I8unv8Tz5kGAAAAHFX10Xh3GmO+knS7pFRjzIf+WRYAAABw+avSo/GstQskLfDTWgAAAIArCts8AAAAAEfENAAAAOCImAYAAAAcEdMAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENHAWxhgNGzbM97qsrEx16tRRnz59/DJ+aWmpxo4dqyZNmsjj8ahVq1Z6//33/TL2D6lRo0aF14cOHZLX65XX69V//dd/KTw83Pf63//+90VZEwAAV5pql3oBwOUsLCxMOTk5Ki4uVmhoqJYtW6bw8HC/jT9+/HgdOHBAOTk5Cg4O1sGDB/Xxxx/7bfzzccMNNygrK0uS9Otf/1o1atTQ6NGjTzvPWitrrQICLs6/i5eVlalaNf5RBQC4PHFnGvgBPXv2VGpqqiQpJSVFQ4YM8b135MgRDR8+XAkJCYqLi9OiRYskScnJyRowYIB69OihJk2a6Omnnz5t3KNHj+qNN97Q9OnTFRwcLEm6+eabddddd0mSHn30UcXHx6t58+Z6/vnnfdeNHTtWUVFRiomJ8cVuUlKS5s2b5zvn5F3noqIide3aVS1atFB0dLRvfedr165d8ng8euSRR9SiRQsdOHBAb7/9tqKjo+XxePTss89KOhG+tWrV8l03Z84cPfjgg77fezwexcbGqnPnzr7zn3rqKbVq1UoxMTGaMWOGJGn58uXq1q2bBg8erLi4OBUWFqpnz56KjY2Vx+Op8LUCAHApcbsH+AGDBw/WxIkT1adPH23evFnDhw/XqlWrJEmTJk1Sly5dNHPmTBUUFKhVq1bq1q2bJCkrK0sbN25UcHCwIiMjNXLkSNWvX9837q5du9SgQQNdd911lc47adIk1a5dW+Xl5eratas2b96sW265RQsWLNDnn38uY4wKCgrOuvaQkBAtWLBA1113nb7++mu1adNG/fr1kzHmvD+HrVu3atasWXr11Vf11Vdf6Ve/+pUyMjJUs2ZNdevWTYsXL1aPHj3OeP1vfvMbpaen6+abb/at+/XXX9dNN92kdevW6dixY2rTpo26d+8uSfrss8+0detWNWjQQHPnzlVERIRvC8zhw4fPe/0AAFwI3JkGfkBMTIxyc3OVkpKiXr16VXhv6dKlmjx5srxerzp16qSSkhLt3btXktS1a1fVrFlTISEhioqK0p49e85r3nfeeUctWrRQXFyctmzZoq1bt+q6665TSEiIHnzwQc2fP1/Vq1c/6xjWWj377LOKiYlRt27dlJeXp4MHD57fB/C9n/zkJ0pISJAkrV27Vl26dNGNN96ooKAgDR06VCtXrjzr9W3bttV9992nGTNm6Pjx45JOfH6zZs2S1+tV69atVVBQoJ07d0qSbr/9djVo0EDSiT+DDz74QGPHjtWaNWtUs2ZNp68BAAB/48408B8WbszTlA+3a39BsYpLy7VwY5769eun0aNHKz09XYcOHfKda63Vu+++q8jIyApjrF271rd1Q5ICAwNVVlZW4Zxbb71Ve/fuVWFhoa699toK7+3evVtTp07V+vXrdf311yspKUklJSWqVq2a1q1bp48++khz5szRX/7yF61YsULVqlXzBaq11vcNg7Nnz1Z+fr4yMzMVFBSkiIgIlZSUOH0uYWFhFb7uygQEBFR479S53njjDa1du1aLFy9WbGysNm/eLGutXnnlFXXt2rXCOMuXL68w32233aaMjAwtWbJEY8aMUZ8+fXxbSwAAuJS4Mw2cYuHGPI2bn628gmJZSdZK4+Znq16rnpowYYKio6MrnJ+YmKjp06f7AnLjxo3nPFf16tX185//XI8//rgvfk/uRf7uu+8UFhammjVr6uDBg77tDUVFRTp8+LB69eqll156yfcNgxEREcrMzJQkLVq0SKWlpZJObIe46aabFBQUpLS0tPO+O34mbdq0UVpamg4dOqSysjLNmTNHHTt2VEBAgK6//nrt3LlTx48f14IFC3zXfPnll2rTpo1eeOEFXX/99crLy1NiYqJeeeUV379obN++XcXFxafNl5eXpxo1amjYsGF66qmntGHDBr98HQAAVBV3poFTTPlwu4pLyyscKy4t16ysQq0Z+8Rp548fP16jRo1STEyMrLWKiIjQ4sWLz3m+3/72t/rVr36lqKgohYSEKCwsTBMnTlRsbKzi4uLUvHlzNW7cWG3btpUkFRYW6o477lBJSYmstZo2bZok6Re/+IXuuOMOtWrVSl27dvXd1b3nnnvUt29fxcfHy+v1qlmzZq4fTQW33HKLJk6cqE6dOslaq759+6p3796SpN///vfq0aOHGjRooKioKB07dkyS9OSTT2r37t2y1qp79+7yeDy67bbbtHfvXnm9XknSTTfdVOk3SW7atEljx45VQECArrnmGr366qt++ToAAKgqc6a/rr2Q4uPjbUZGxkWfF/ghjcamqrL/RRhJuyf3vtjLAQAAVWSMybTWxl+o8dnmAZyiXq3Q8zoOAACubsQ0cIoxiZEKDQqscCw0KFBjEiPPcAUAALiasWcaOEX/uBM/3fDk0zzq1QrVmMRI33EAAIBTEdPAf+gfF048AwCAc8I2DwAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhqAjzFGw4YN870uKytTnTp11KdPH7+M36lTJ2VkZJz3dcnJyRoxYsQ5n5+enq5PPvnkvObYsWOHevXqpVtvvVW33Xab7rrrLh08ePB8l6rc3Fz9/e9/P+/rAABXJmIagE9YWJhycnJUXFwsSVq2bJnCw6+8Z26fb0yXlJSod+/eevTRR7Vr1y5t27ZNjz76qPLz8897bmIaAK4uxDSACnr27KnU1FRJUkpKioYMGeJ778iRIxo+fLgSEhIUFxenRYsWSTpx53jAgAHq0aOHmjRpoqeffvoH53n00UcVHx+v5s2b6/nnn/cdX79+vX76058qNjZWrVq1UmFhYYXrUlNTdfvtt+vrr79Wfn6+Bg4cqISEBCUkJGjNmjXKzc3Vq6++qmnTpsnr9WrVqlX6xz/+IY/Ho9jYWHXo0OG0tfz973/X7bffrr59+/qOde7cWR6PRyUlJXrggQcUHR2tuLg4paWlSToRze3bt1eLFi3UokULX7yPHTtWq1atktfr1bRp07Rlyxa1atVKXq9XMTEx2rlz57n+UQAArgTW2ov+q2XLlhbA5ScsLMxu2rTJDhw40BYXF9vY2FiblpZme/fuba21dty4cfatt96y1lr77bff2iZNmtiioiI7a9Ys26hRI1tQUGCLi4ttgwYN7N69e08bv2PHjnb9+vXWWmsPHTpkrbW2rKzMduzY0W7atMkeO3bMNmrUyK5bt85aa+3hw4dtaWmpnTVrlv3lL39p58+fb9u1a2e/+eYba621Q4YMsatWrbLWWrtnzx7brFkza621zz//vJ0yZYpvXo/HY7/66ivfuv/Tk08+aV966aVKP5OpU6fapKQka62127Zts/Xr17fFxcX2yJEjtri42Fpr7Y4dO+zJf66d+nlZa+2IESPs22+/ba219tixY/bo0aNn+yMAAPiZpAx7AbuWHycOXOUWbszTlA+3a39BsYpLy/Vl+Q3Kzc1VSkqKevXqVeHcpUuX6r333tPUqVMlndgesXfvXklS165dVbNmTUlSVFSU9uzZo/r1659x3nfeeUevv/66ysrKdODAAW3dulXGGNWtW1cJCQmSpOuuu853flpamjIyMrR06VLf8eXLl2vr1q2+c7777rvT7mRLUtu2bZWUlKS77rpLAwYMOK/PZ/Xq1Ro5cqQkqVmzZmrYsKF27Nihhg0basSIEcrKylJgYKB27NhR6fW33367Jk2apK+++koDBgxQkyZNzmt+AMDlrUoxbYyZIqmvpH9L+kLSA9baAn8sDMCFt3BjnsbNz1ZxabkkyVpp3PxseRM6afTo0UpPT9ehQ4d851tr9e677yoyMrLCOGvXrlVwcLDvdWBgoMrKys447+7duzV16lStX79e119/vZKSklRSUiJrrYwxlV7TuHFjffnll9qxY4fi4+MlScePH9enn36q0NDQs36dr776qtauXavU1FR5vV5lZWXphhtu8L3fvHlzffzxx5Vee+KmxummTZumm2++WZs2bdLx48cVEhJS6XlDhw5V69atlZqaqsTERM2YMUNdunQ563oBAFeOqu6ZXibJY62NkbRD0riqLwnAxTLlw+2+kD6puLRcO2slaMKECYqOjq7wXmJioqZPn+4LzI0bNzrN+9133yksLEw1a9bUwYMH9f7770s6ced3//79Wr9+vSSpsLDQF+UNGzbU/Pnzdd9992nLli2SpO7du+svf/mLb9ysrCxJ0rXXXlvhDvUXX3yh1q1ba+LEibrxxhu1b9++CusZOnSoPvnkE99ecUn64IMPlJ2drQ4dOmj27NmSTjzxY+/evYqMjNThw4dVt25dBQQE6K233lJ5eXmlc3/55Zdq3LixHn/8cfXr10+bN292+swAAJenKsW0tXaptfbk7afPJN1S9SUBuFj2FxRXevyQraEnnnjitOPjx49XaWmpYmJi5PF4NH78+POar6ysTMHBwYqNjVVcXJyaN2+u4cOHq23btpKka665RnPnztXIkSMVGxurn/3sZyopKfFdHxkZqdmzZ2vQoEH64osv9Oc//1kZGRmKiYlRVFSUXn31VUlS3759tWDBAt83II4ZM0bR0dHyeDzq0KGDYmNjK6wrNDRUixcv1vTp09WkSRNFRUUpOTlZN910kx577DGVl5crOjpad999t5KTkxUcHKzHHntMb775ptq0aaMdO3YoLCxMkhQTE6Nq1aopNjZW06ZN09y5c+XxeOT1evX555/rvvvuO6/PDABweTNn+ivM8x7ImH9KmmutffuHzo2Pj7cuz5oF4F9tJ69QXiVBHV4rVGvG+ncrwrFjx3TrrbcqJyfHt7caAIALzRiTaa2Nv1Dj/+CdaWPMcmNMTiW/7jjlnOcklUmafZZxHjLGZBhjMlye3QrA/8YkRio0KLDCsdCgQI1JjDzDFW4yMjLk9Xr12GOPEdIAgB+VKt+ZNsbcL+kRSV2ttUfP5RruTAOXj1Of5lGvVqjGJEaqf9yV94NaAACozIW+M13Vp3n0kPSMpI7nGtIALi/948KJZwAAHFX1aR5/kXStpGXGmCxjzKt+WBMAAABwRajSnWlr7a3+WggAAABwpanqnWkAAADgqkVMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhoAAABwREwDAAAAjohpAAAAwBExDQAAADgipgEAAABHxDQAAADgiJgGAAAAHBHTAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAAACAI2IaAAAAcFSlmDbGvGCM2WyMyTLGLDXG1PPXwgAAAIDLXVXvTE+x1sZYa72SFkua4Ic1AQAAAFeEKsW0tfa7U16GSbJVWw4AAABw5ahW1QGMMZMk3SfpsKTOVV4RAAAAcIX4wTvTxpjlxpicSn7dIUnW2uestfUlzZY04izjPGSMyTDGZOTn5/vvKwAAAAAuEWOtf3ZmGGMaSkq11np+6Nz4+HibkZHhl3kBAACAMzHGZFpr4y/U+FV9mkeTU172k/R51ZYDAAAAXDmqumd6sjEmUtJxSXskPVL1JQEAAABXhirFtLV2oL8WAgAAAFxp+AmIAAAAgCNiGgAAAHBETAMAAACOiGkAAADAETENAAAAOCKmAQAAAEfENAAAAOCImAYAAAAcEdMAAACAI2IaAAAAcERMAwAAAI6IaQAAAMARMQ0AAAA4IqYBAAAAR8Q0AAAA4IiYBgAAABwR0wAAAIAjYhoAAABwdFXGtDFGw4YN870uKytTnTp11KdPH7+M36lTJ0VGRsrr9crr9WrevHl+Gfdc5ObmyuPxVDiWnZ3tW0vt2rXVqFEjeb1edevW7aKtCwAA4Meo2qVewKUQFhamnJwcFRcXKzQ0VMuWLVN4eLhf55g9e7bi4+PP6xprray1Cgjw77/jREdHKysrS5KUlJSkPn366L//+79PO6+srEzVql28/0pc7PkAAAD87aq8My1JPXv2VGpqqiQpJSVFQ4YM8b135MgRDR8+XAkJCYqLi9OiRYskScnJyRowYIB69OihJk2a6Omnnz6vOf/4xz/K4/HI4/HopZdeknTiTvJtt92mxx57TC1atNC+fftUo0YNPfPMM2rZsqW6deumdevWqVOnTmrcuLHee+8933Xt27dXixYt1KJFC33yySdOn8Py5cvVrVs3DR48WHFxcZKkF1980bfO6dOnS5J27dolr9fru27y5Mn67W9/K0maNm2aoqKiFBsbq3vvvVeSVFRUpKSkJLVq1UpxcXH65z//KUmaMWOGBg8erD59+qhnz57Ky8tTu3bt5PV65fF4nL8OAACAS+Lk3dCL+atly5b2UgoLC7ObNm2yAwcOtMXFxTY2NtampaXZ3r17W2utHTdunH3rrbestdZ+++23tkmTJraoqMjOmjXLNmrUyBYUFNji4mLboEEDu3fv3tPG79ixo23atKmNjY21sbGx9uuvv7YZGRnW4/HYoqIiW1hYaKOiouyGDRvs7t27rTHGfvrpp77rJdklS5ZY+//bu9/YKs86jOPXr6VUKBsQNRT5K+FvsW0gLYEsEFccRVzgAG9kwzDNwgAxNBFkYNhe7MWasDDdNCZu6gtKMGHQQogIyFzCTMbs5OCcSFkGZQWNKP+69nSlpz9fnHJyKrCxp3Dujn4/SZM+T88593We3mmvPuc+T909Fov5I4884u3t7R6Px720tNTd3VtaWjyRSLi7e0NDg984pmfOnPGpU6fe9rmvWLHCd+3ald4+fPiwFxQUeGNjo7u7Hzt2zEtKSrylpcWvXbvmkydP9hMnTvjp06fTY7u7P//88/7cc8+5u3thYaF//PHH6ePl7r5hwwbfuXOnu7tfunTJJ0yY4IlEwl955RUfPXq0X7p0yd3dq6urvbq62t3dOzo6vLm5+dO+fQAAAHdMUr3fw17bZ15jrzt+XlsPntKFKwklrif1QfKLOnv2rHbu3KkFCxZ0u+2hQ4e0b98+vfDCC5KktrY2nTt3TpI0d+5cDR48WJJUVFSkxsZGjRo16qbx/n+ZR01NjRYvXqyCggJJ0pIlS3T06FEtXLhQY8aM0cyZM9O37d+/v+bPny8ptUQjPz9feXl5Ki4u1tmzZyVJ169f19q1axWPx5Wbm6uGhobIx2bWrFkaPXq0JOno0aNaunSpBg4cKEmKxWJ68803NW/evNvef+rUqVq+fLkWLVqkWCwmKXUMDxw4oOrqakndj+G8efM0dOhQSVJ5ebmeeuoptbW1KRaLqbS0NPLzAAAAyLY+scyj7vh5bdrzrs5fScgluUub9ryrCeVf1/r167st8ZBSZ+t3796teDyueDyuc+fOacqUKZKk/Pz89O1yc3PV0dFxRxlSfxjd2o2CfUNeXp7MTJKUk5OTHjMnJyc93osvvqhhw4bpxIkTqq+vV3t7+x3l+LTxb5ezX79+6uzsTG+3tbWlPz948KBWrVqlt99+W2VlZUomk3J31dXVdTuGEydOvGm8iooKvfHGGxo+fLgef/xx7dixI/LzAAAAyLY+Uaa3HjylxPVkt32J60mdHlKuZ555RsXFxd2+VllZqZdffjldLI8fP97jDHPmzFFdXZ1aW1vV0tKi2tpazZ49O/LjXb16VcOHD1dOTo62b9+uZDL56Xe6w5y1tbVKJBL66KOPtHfvXs2ePVuFhYW6cOGCLl++rLa2tvR682QyqaamJlVUVGjr1q26ePGiWltbVVlZqZdeein9uLc7ho2NjSosLNTKlSv1xBNP3JVjDQAAkC19YpnHhSuJW+7/rw/SunXrbtq/ZcsWVVVVqaSkRO6usWPHav/+/T3KMH369PQb8iTpySef1LRp09LLNj6rNWvWaOnSpdq1a5cefvjhm85uRzVjxgwtW7ZM5eXlkqTVq1en/9jYvHmzysvLNW7cOBUVFUlKXZHjscceU3Nzszo7O7Vx40Y98MADevbZZ1VVVaXi4mJ1dnZq/Pjx6TdyZjpy5Ii2bdumvLw8DRo0SDU1NXfleQAAAGSDfdLyg3ulrKzM6+vrszbeQ9Wv6/wtCvWIIQP0p6crspYDAAAA2WVm77j7Z7te8WfQJ5Z5bKicpAF5ud32DcjL1YbKSYESAQAA4H7QJ5Z5xKal/iHLjat5fGXIAG2onJTeDwAAAETRJ8q0lCrUlGcAAADcTX1imQcAAABwL1CmAQAAgIgo0wAAAEBElGkAAAAgIso0AAAAEBFlGgAAAIiIMg0AAABERJkGAAAAIqJMAwAAABFRpgEAAICIKNMAAABARJRpAAAAICLKNAAAABARZRoAAACIiDINAAAARESZBgAAACKiTAMAAAARUaYBAACAiMzdsz+o2UVJjVkfGHfTlyT9J3QI9CrMCWRiPiAT8wGZsj0fxrj7l+/Vgwcp0/j8M7N6dy8LnQO9B3MCmZgPyMR8QKb7bT6wzAMAAACIiDINAAAARESZRlS/DB0AvQ5zApmYD8jEfECm+2o+sGYaAAAAiIgz0wAAAEBElGlEZmZbzewfZvZXM6s1syGhMyH7zGy+mZ0ys/fN7OnQeRCOmY0ysz+a2Ukze8/M1oXOhPDMLNfMjpvZ/tBZEJ6ZDTGz17r6w0kzmxU6U09RptEThyV9zd1LJDVI2hQ4D7LMzHIl/VzSNyUVSVpmZkVhUyGgDkk/dPcpkmZK+j7zAZLWSToZOgR6jZ9K+r27T5ZUqvtgblCmEZm7H3L3jq7NtySNDJkHQcyQ9L67f+Du7ZJ+K2lR4EwIxN3/6e5/6fq8WalfkiPCpkJIZjZS0rckvRo6C8IzswclzZH0K0ly93Z3vxI2Vc9RpnG3fE/SgdAhkHUjJH2Ysd0kyhMkmdlYSdMkHQubBIH9RNKPJHWGDoJeYZyki5J+07X051UzKwgdqqco0/hEZvYHM/vbLT4WZdzmx0q9vLsjXFIEYrfYxyWC+jgzGyRpt6Qqd78WOg/CMLNHJf3b3d8JnQW9Rj9J0yX9wt2nSWqR9Ll/r02/0AHQu7n7Nz7p62a2QtKjkuY611nsi5okjcrYHinpQqAs6AXMLE+pIr3D3feEzoOgHpK00MwWSPqCpAfNrMbdlwfOhXCaJDW5+41XrF7TfVCmOTONyMxsvqSNkha6e2voPAjiz5ImmNlXzay/pG9L2hc4EwIxM1NqLeRJd98WOg/CcvdN7j7S3ccq9bPhdYp03+bu/5L0oZlN6to1V9LfA0a6KzgzjZ74maR8SYdTv0P1lruvChsJ2eTuHWa2VtJBSbmSfu3u7wWOhXAekvQdSe+aWbxr32Z3/13ATAB6lx9I2tF1AuYDSd8NnKfH+A+IAAAAQEQs8wAAAAAiokwDAAAAEVGmAQAAgIgo0wAAAEBElGkAAAAgIso0AAAAEBFlGgAAAIiIMg0AAABE9D+QBptRgWw0xwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 864x648 with 1 Axes>"
"name": "stderr",
"output_type": "stream",
"text": [
"Computing transition probabilities: 100%|██████████████████████████████████████████| 8125/8125 [01:27<00:00, 93.02it/s]\n",
"Generating walks (CPU: 1): 100%|███████████████████████████████████████████████████████| 10/10 [04:03<00:00, 24.35s/it]\n"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
{
"ename": "AttributeError",
"evalue": "'Node2Vec' object has no attribute 'get_embeddings'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-34-cf5732845930>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0mmodel\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mNode2Vec\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mG\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mwalk_length\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m10\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mnum_walks\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m10\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mp\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0.25\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mq\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m4\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mworkers\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[0membeddings\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_embeddings\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 5\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 6\u001b[0m \u001b[0mevaluate_embeddings\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0membeddings\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mAttributeError\u001b[0m: 'Node2Vec' object has no attribute 'get_embeddings'"
]
}
],
"source": [
"plot_nodes(terms)"
"G = createGraph()\n",
"\n",
"model = Node2Vec(G,walk_length=10,num_walks=10,p=0.25,q=4,workers=1) \n",
"embeddings = model.get_embeddings()\n",
"\n",
"evaluate_embeddings(embeddings)\n",
"plot_embeddings(embeddings)"
]
},
{
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment